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Part 2

improvement in TER, but no improvement in BLEU. The total improvement over
the word-based baseline is 0.5 in BLEU and 0.9 in TER. The improvements are in
line with those described in the previous section.

2.2.3.7 Discussion

In our experiments, we concatenated the aligned training data from different
segmenters in rule extraction. Obviously, not all segmenters are equally useful. A
refinement is to weight the alignments from different segmenters (or exclude
some segmenters altogether) based on performances on the development set.
While performing such an experiment is straightforward, due to the limitation of
time we leave it for future work.

While character-based decoding is similar to decoding a segmentation lattice
(Dyer et al. 2008), it has two advantages. First, it incurs a smaller overhead in
translation table size, since rules with the same unsegmented source string are
merged. In our experiments, the character-based phrase translation table
(extracted from the combined alignments) was only 40% larger than that of the
word-based translation table (left to right word segmentation). Due to a compact
translation table, the overhead in decoding speed is also small: Character-based
decoding was only 45% slower than the word-based baseline. We expect lattice-
based methods will result in a much larger translation table and a significant
reduction in decoding speed. A disadvantage with character-based decoding is
that it cannot assign weights to different segmentations of the input in scoring
translation theories, while lattice-based methods do not have this problem.

2.2.4. Synchronous Learning of Chinese Word
Segmentation and Word Alignment for Statistical
Machine Translation

Authors: Jia Xu, Jianfeng Gao, Kristina Toutanova and Hermann Ney

2.2.4.1 Introduction

Chinese sentences are written in the form of a sequence of Chinese
characters; words are not separated by white spaces. This is different from most
European languages and poses difficulty in many natural language processing
tasks, such as machine translation.

It is difficult to define “correct” Chinese word segmentation (CWS) and
various definitions have been proposed. The common solution in Chinese-to-
English translation has been to segment the Chinese text using an off-the-shelf
CWS method and to apply a standard translation model given the fixed
segmentation. The most widely applied method for MT is unigram segmentation,
such as segmentation using the LDC (LDC 2003) tool, which requires a manual
lexicon containing a list of Chinese words and their frequencies. The lexicon and
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Machine Translation from Text

frequencies are obtained using manually annotated data. This method is sub-
optimal for MT, because words out of the manual lexicon cannot be generated. In
addition to unigram segmentation, other methods have been proposed. For
example, (Gao et al. 2005) described an adaptive CWS system and Andrew
(2006) and Chang et. al. (2008) employed a conditional random field model for
word segmentation. However, these methods are not specifically developed for
the MT application, where Chinese word segmentation and translation model
training are separate steps although they influence each other.

In the work of Xu et al. (2004), word segmentations are learned from word
alignments. We refine this method by integrating the Chinese word segmentation
into the word alignment training so that the word segmentation and alignment
can be learned synchronously and their effects on each other can be considered in
the training. We present a log-linear model derived from a generative model
which consists of a word model and two alignment models, representing the
monolingual and bilingual information, respectively. The model is trained using
Gibbs sampling. Alternative segmentation boundaries and realignments of words
due to the change of these boundaries are taken into account in the sampling
process. New Chinese words are generated using Dirichlet Process and the
lexicon is updated dynamically. In this way, two problems are solved: adaptation
to the parallel training corpus, and out of vocabulary words.

Our experiments on both large (GALE) and small (IWSLT) data tracks of
Chinese-to-English translation show that our method improves the performance
of state-of-the-art machine translation systems.

2.2.4.2 Review of the Baseline System

In statistical machine translation, we are given a Chinese sentence in
characters cf = ¢y ...cx which is to be translated into an English sentence
el =e; ...e;. In order to obtain a more adequate mapping between Chinese and
English words, cf is wusually segmented into words flj =fi..f; in
preprocessing.

In our baseline system, we apply the commonly used unigram model to
generate the segmentation. Given a manually compiled lexicon containing words
and their relative frequencies, the best segmentation is the one that maximizes the
joint probability of all words in the sentence, under the assumption that words are
independent of each other. However, a human collected lexicon can hardly cover
all Chinese words in various domains. Words out of the lexicon list are dropped
during word segmentation and might not be able to contribute to the translation
any more. Inaccurate word distributions can also result in sub-optimal
segmentation.

Once we have segmented the Chinese sentences into words, we train
standard alignment models in both directions with GIZA++ (Och and Ney 2002)
using models of IBM-1 (Brown et al. 1993), HMM (Vogel et al. 1996) and IBM-
4 (Brown et al. 1993). The translation system uses a phrase-based decoder with a
log-linear model described by Zens and Ney (2004). The feature weights are
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tuned on the development set using a downhill simplex algorithm (Press et al.
2002). The language model is a statistical n-gram model estimated using
modified Kneser-Ney smoothing.

2.2.4.3 Semi-supervised Word Segmentation

We introduce a semi-supervised approach to perform Chinese word
segmentation as illustrated in Figure 2.2. The inputs to the system are the
bilingual training data, including a set of Chinese sentences in characters and its
English translations, a manual Chinese word lexicon, such as LDC lexicon, as
well as the test corpus on character level. First, we segment the Chinese training
corpus with a unigram segmenter using the manual lexicon and get an initialized
training corpus in words. Then, we perform the synchronous training of Chinese
word segmentations and word alignments to maximize the likelihood of a log-
linear model. Optimal word segmentations and alignments are generated as
outputs. By counting the Chinese word frequencies of the generated training
corpus, we obtain a lexicon. To combine this lexicon with a manual lexicon, we
interpolate the probabilities of each word entry in both lexicons linearly. This
combined lexicon is applied to segment the test corpus using unigram
segmentation. The optimal Chinese word segmentations of the training and test
data, as well as, the alignments of the training data, are the system outputs, which
will be used further into the decoder.

Parallel
v sentences <

Chinese sentences  English sentences
in characters in words

!
Unigram CWS:
manual lexicon

'

Chinese sentences
in words as initialization

'

Synchronous training of CWS and word alignment

Word alignment and
segmentation

Count word frequency

|

Unigram CWS:
Test corpus W . _, Testcorpus
in characters GS lexicon in words

manual lexicon

Figure 2.2: Semi-supervised CWS process.

2.2.4.4 Generative and Log-linear Model

[ Observations | |
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Chinese characters | cf | /NgBrges

English sentence el | Children play cards
Hidden variables
Alignment normal | af | e.g. (cards, 4K),(cards, J})
Alignment inverse | bl | e.g. (4K,cards),( ¥, cards)

Chinese words | eq. INEBLACH

Table 2.16: Observations and hidden variables of the generative model.

As a solution to the problems with the conventional approach to CWS
mentioned in Section 2.2.4, we propose a generative model for CWS in this
section and then extend the model to a more general, but deficient model, a log-
linear model in which most features are derived from the sub-models of the
generative model.

As shown in Table 2.16, the generative model assumes that a corpus of
parallel sentences (cf, ef) is generated along with a hidden sequence of Chinese
words flj and a hidden word alignment b} in the inverse direction for every
sentence. The joint probability of the observations (cf,e{) can be obtained by
summing over all possible values of the hidden variables flj and b} and each
value is computed as following:

Pr(ck,el,f/,b]) = Pr(f])s(f], ) Pritel, bl |£])
(2.1)

1 A e el
~=P(f)" Piltel, bl| ;)2 Pit! o] |e])*s 22)

8(f],cf) is 1 if the characters of the sequence of words £/ are cf and to 0
otherwise, Z is the normalization factor. We can drop the conditioning on ¢/ in
Prifte], bl |f/), because the characters are deterministic given the words.

In Equation 2.2, we put the monolingual model and the translation models in
both directions together into a single model, where each of the component
models is weighted by a scaling factor. This model can be viewed as a weighted
linear combination of the log probabilities of sub-models. The weights, which are
optimized on a development dataset, have empirical justifications. Since different
sub-models are trained on different datasets, their dynamic value ranges can be
so different that it is inappropriate to combine their log probabilities through
simple addition. Moreover, some models may be poorly estimated due to for
example the lack of large amount of training data. Therefore, empirical results
have demonstrated that the use of scaling factors that reflect the relative
contribution of different sub-models often improves the performance.

In practice, we do not renormalize probabilities and our model is thus
deficient because it does not sum to 1 over observations. However, the model
works very well in our experiments. Similar deficient models have been used
successfully before, such as in IBM models (Och and Ney 2002).
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Monolingual Chinese sentence model

We use the Dirichlet Process unigram word model (Xu et al. 2008) to
introduce new Chinese word types and to learn word distributions automatically
from unlabeled data, where the parameters of a distribution over words G are first
drawn from the Dirichlet prior DP (a,Py). Words are then indepen dently
generated according to G. The probability of a sequence of Chinese words in a
sentence is thus:

Pr(f]) =T_1 Pe(f) 2.3)

Translation model

We employ the Dirichlet Process inverse IBM model 1 to generate English
words and alignments given the Chinese words. In this model, for every Chinese
word f (including the null word), a distribution over English words Gy is first
drawn from a Dirichlet Process prior DP(«, Py(e)), where for Py(e) we use the
empirical distribution over English words in the parallel data. Then the
probability of an English sentence and alignment given a Chinese sentence in
words is given by

1
Prel,bi|f) = liz1 757 Poy, (ailfs) 24)

where the probability of e; is distributed according to Gy, . This is the same

model form as inverse IBM model 1, except we have placed Dirichlet Process
priors on the Chinese word specific distributions over English words.’

In practice, we observed that using a word alignment model in one direction is
not sufficient then added a factor to our model which includes the word
alignment in the other direction, i.e., a Dirichlet Process IBM model 1. We ignore
the detailed description here, because the calculation is the same as that of the
inverse IBM model 1. According to this model, for every English word e
(including the null word), a distribution over Chinese words G. is first drawn
from a Dirichlet Process prior DP(a, Py(f)). Here, for the base distribution
Py (f) we used the same spelling model as for the monolingual unigram Dirichlet
Process prior as described by Xu et al. (2008). The probability of a sequence of

Chinese words flj and a word alignment a{ given a sequence of English words
el is then computed in the same way.

! f», is the Chinese word aligned to e; and Gy, is the distribution over English words conditioned on
the word £, . Similarly, e, is the English word aligned to f; in the other direction and G, is the

]
distribution over Chinese words conditioned on e, .
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Gibbs Sampling Training

It is generally impossible to find the most likely segmentation according to
our Bayesian model using exact inference, because the hidden variables do not
allow exact computation of the integrals. Nonetheless, it is possible to define
algorithms using Markov chain Monte Carlo (MCMC) that produce a stream of
samples from the posterior distribution of the hidden variables given the
observations. We applied the Gibbs sampler (Geman and Geman 1984), one of
the simplest MCMC methods, in which transitions between states of the Markov
chain result from sampling each component of the state conditioned on the
current value of all other variables. For a complete discussion of Gibbs sampling
training and the word segmentation and realignment algorithm used in our
experiment see (Xu et. al. 2008).

The Gibbs sampler for our model works as follows: For each iteration we
sample on each character position by fixing other segmentations and alignments,
then we compare hypotheses considering the segmentation and the related
alignments of this position. Each position has two alternative segmentations: a
boundary exists, or not. The change of a segmentation boundary causes relinking
alignment points to parts or groups of the original words. In the work of Xu et. al.
(2008) all alignment alternatives are discussed in detail. Together with the
boundary versus no-boundary state at each character position, we sample a set of
alignment links between English words and any of the Chinese words related to
this position given all other word alignments and segmentations in the parallel
corpus fixed. After sampling by using the posterior probabilities of each
candidate, we choose one of these candidates and perform the same operation for
the next position. This process is usually terminated until the result is converged.
Since we only implemented the IBM model 1 in both directions for
computational efficiency, more advanced word alignment models are

applied by repeatedly aligning the corpus using GIZA++.

2.2.4.5 Translation Experiments

We performed experiments using our models on a large and a small data
track. We evaluated performance by measuring WER (word error rate), PER
(position-independent word error rate), BLEU (Papineni et al. 2002) and TER
(translation error rate) (Snover et al. 2006) using multiple references.

Translation Task: Large Track GALE Translation

We first report the experiments on the GALE machine translation task
(GALE 2008). The bilingual training corpus is a superset of corpora in the news,
conversation domains collected from different sources provided under the GALE
program. As shown in Table 2.17, the training corpus in each language contains
more than seven million sentences after the bilingual sentence segmentation (Xu
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et al. 2005b). We took LDC (LDC 2003) as baseline method to compare. The
word segmentation using Gibbs Sampling (GS) and baseline method generated
92.8 and 93.9 million Chinese running words respectively.
Chinese | English
LDC | GS
Sentences[M] 7.57
Running Words[M]| 93.9 | 92.8 102
Vocabulary[K]] 112 121 347
Singletons[K]| 38.1 | 38.3 152

Train

Sentences 1943
Running Words[K]| 44.3 | 44.3 53.2
Test Vocabulary[K][ 6.78 | 6.60 6.15

00Vs (R.W.)| 15 17 246
OO0Vs (invoc.) 13 14 158

Table 2.17: Statistics of corpora in task GALE.

The CWS model parameters are not optimized but fixed as applied in the
IWSLT task because of the computational complexity. The log-linear model
scaling factors in the decoder as mentioned in Section 2.2.4.2 are neither
optimized and we took the values optimized on the baseline system for
convenience. The resulting systems were evaluated on the test corpus in 2008
including all domains with 1943 sentences. We only list the statistics of the first
English reference.

Starting from the unigram segmentation as initial word segmentation, we
performed Gibbs sampling with only one iteration, which takes several hours, on
the training corpus because of the large computational requirement. After that,
we merged the GS generated lexicon with a weight of 0.4 and the manual LDC
lexicon with a weight of 0.6 using linear combination. Then we performed the
unigram segmentation on the test corpus using the combined lexicon.

As shown in Table 2.18, on the test data, the BLEU score was improved by
0.5% absolutely or more than 1.8% relatively using GS with combined lexicon.
The TER score is also enhanced significantly, i.e., 0.8% absolutely and 0.9%
relatively.

Method WER PER BLEU | TER
LDC 73.0 49,5 28.2 |67.1
Unigram 73.0 49.7 28.4 |67.2
GS with combined lexicon | 72.5 48.6 28.7 166.3

Table 2.18: Translation performance [%)] with the baselines (LDC, unigram) and GS method
on GALE.

We can see that although the semi-supervised word segmentation is not yet

converged, it can still outperform a supervised one in MT. One of the reasons is
probably the training and test corpora contain many words and words have
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different frequencies in our MT data from they do in the manually labeled CWS
data.

Task: Small Track IWSLT

The Chinese training corpus of the IWSLT task was segmented using the
unigram segmenter as baseline method (Baseline) and our GS method. The
parameter optimizations were performed on the Dev2 data with 500 sentences
and evaluations were done on both the Dev3 and the Eval data, i.e., the
evaluation corpus of (IWSLT 2007).

The model weights of GS were optimized using the Powell (Press et al.
2002) algorithm with respect to the BLEU score. We obtained the optimal number
of iterations of the GIZA++ word alignment update as four.

Test Method WER | PErR | BLEU | TER
Dev2 Unigram (Baseline) | 38.2 | 31.2 | 55.4 | 37.0
GS 36.8 | 30.0 | 56.6 |355
Dev3 Unigram (Baseline) | 33.5 | 27.5 | 604 | 32.1
GS 323 | 266 | 610 |314
Characters 493 | 418 | 354 |475
LDC 46.2 ]140.0 | 39.2 |45.0
Eval ICT _ 459 |40.4 | 40.1 |44.9
Unigram (Baseline) | 46.8 | 40.2 | 41.6 | 45.6
9-gram 46.9 |40.4 | 40.1 |[454
GS 459 |40.0 | 416 | 448

Table 2.19: Translation performance with different CWS methods on IWSLT[%].

For a fair comparison, we evaluated on various CWS methods including
translation on characters, LDC (LDC 2003), ICT (Zhang et al. 2003), unigram,
9-gram and GS. Improvements using GS can be seen in Table 2.19. Under all test
sets and evaluation criteria, GS outperforms the baseline method. The absolute
WER decreases with 1.2% on the Dev3 and with 0.9% on the Eval data over the
baseline. In the BLEU score there is no change on the Eval set between the
baseline and the GS, because the Eval data has a lower vocabulary coverage with
the Dev2 than the other test sets such as the Dev3 do. The optimization of many
parameters leads to a slight over-fitting of the model, so that the parameters may
not be optimal for the Eval translation.

a) Baseline 51T g ?
do you have a ?

GS A 2
do you have a shorter way ?
REF is there a shorter route ?

b) Baseline i & VFH 440
please show me the in .
GS TR B
please show me the total price .
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REF can you tell me the total amount?

Table 2.20: Segmentation and translation outputs with baseline and GS methods.

We compared the translation outputs using the GS with those using the
baseline method. On the Eval data, 196 sentences have different translations out
of 489 lines, where 64 sentences from the GS are better, 33 sentences are worse
and the rests have similar translation qualities. Table 2.20 shows two examples
from the Eval corpus. We list segmentations produced by the baseline and the GS
methods, as well as the translations generated using these segmentations. The GS
method generates better translation results than the baseline method in these
cases.

2.2.4.6 Conclusion and Future Work

We showed that it is possible to learn Chinese word boundaries during the
word alignment training so that the translation performance of Chinese-English
MT systems is improved.

We presented a Bayesian generative model for parallel Chinese-English
sentences, which uses word segmentation and alignment as hidden variables and
incorporates both monolingual and bilingual information to derive word
segmentation and alignment for MT.

Starting with initial word segmentation, our method learns both new Chinese
words and word distributions using the Dirichlet Process. In a small data
environment and a large data environment, our method outperformed the
standard Chinese word segmentation approach in terms of the Chinese-English
translation quality. In future work, we plan to enrich our models to better
represent the true distribution of the data.

Chapter 2.3 Word Alignment

2.3.1. Word Alignment Revisited

Authors: Francisco Guzman, Qin Gao, Jan Niehues and Stephan VVogel

2.3.1.1 Introduction

Word alignment can be considered the backbone of Statistical Machine
Translation. Even when Statistical Machine Translation (SMT) shifted from a
word-based to a phrase-based paradigm, word alignment remained the base for
most phrase-based (Koehn et al. 2003), hierarchical (Chiang 2007) and syntactic
SMT systems (Zollmann and Venugopal 2006; Marcu et al. 2006). Generative
models have the advantage that they are well suited for a noisy-channel
approach. Unsupervised training can be used to align a large amount of unlabeled
parallel corpora. Nonetheless, they have a major disadvantage, because these
models are completely unsupervised, they can hardly make use of the
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