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improvement in TER, but no improvement in BLEU. The total improvement over 

the word-based baseline is 0.5 in BLEU and 0.9 in TER. The improvements are in 

line with those described in the previous section. 

2.2.3.7 Discussion 

In our experiments, we concatenated the aligned training data from different 

segmenters in rule extraction. Obviously, not all segmenters are equally useful. A 

refinement is to weight the alignments from different segmenters (or exclude 

some segmenters altogether) based on performances on the development set. 

While performing such an experiment is straightforward, due to the limitation of 

time we leave it for future work. 

While character-based decoding is similar to decoding a segmentation lattice 

(Dyer et al. 2008), it has two advantages. First, it incurs a smaller overhead in 

translation table size, since rules with the same unsegmented source string are 

merged. In our experiments, the character-based phrase translation table 

(extracted from the combined alignments) was only 40% larger than that of the 

word-based translation table (left to right word segmentation). Due to a compact 

translation table, the overhead in decoding speed is also small: Character-based 

decoding was only 45% slower than the word-based baseline. We expect lattice-

based methods will result in a much larger translation table and a significant 

reduction in decoding speed. A disadvantage with character-based decoding is 

that it cannot assign weights to different segmentations of the input in scoring 

translation theories, while lattice-based methods do not have this problem. 

2.2.4. Synchronous Learning of Chinese Word 
Segmentation and Word Alignment for Statistical 
Machine Translation 

 
Authors: Jia Xu, Jianfeng Gao, Kristina Toutanova and Hermann Ney 

2.2.4.1 Introduction 

Chinese sentences are written in the form of a sequence of Chinese 

characters; words are not separated by white spaces. This is different from most 

European languages and poses difficulty in many natural language processing 

tasks, such as machine translation.  
It is difficult to define ―correct‖ Chinese word segmentation (CWS) and 

various definitions have been proposed. The common solution in Chinese-to-

English translation has been to segment the Chinese text using an off-the-shelf 

CWS method and to apply a standard translation model given the fixed 

segmentation. The most widely applied method for MT is unigram segmentation, 

such as segmentation using the LDC (LDC 2003) tool, which requires a manual 

lexicon containing a list of Chinese words and their frequencies. The lexicon and 
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frequencies are obtained using manually annotated data. This method is sub-

optimal for MT, because words out of the manual lexicon cannot be generated. In 

addition to unigram segmentation, other methods have been proposed. For 

example, (Gao et al. 2005) described an adaptive CWS system and Andrew 

(2006) and Chang et. al. (2008) employed a conditional random field model for 

word segmentation. However, these methods are not specifically developed for 

the MT application, where Chinese word segmentation and translation model 

training are separate steps although they influence each other. 

In the work of Xu et al. (2004), word segmentations are learned from word 

alignments. We refine this method by integrating the Chinese word segmentation 

into the word alignment training so that the word segmentation and alignment 

can be learned synchronously and their effects on each other can be considered in 

the training. We present a log-linear model derived from a generative model 

which consists of a word model and two alignment models, representing the 

monolingual and bilingual information, respectively. The model is trained using 

Gibbs sampling. Alternative segmentation boundaries and realignments of words 

due to the change of these boundaries are taken into account in the sampling 

process. New Chinese words are generated using Dirichlet Process and the 

lexicon is updated dynamically. In this way, two problems are solved: adaptation 

to the parallel training corpus, and out of vocabulary words.  

Our experiments on both large (GALE) and small (IWSLT) data tracks of 

Chinese-to-English translation show that our method improves the performance 

of state-of-the-art machine translation systems. 

2.2.4.2 Review of the Baseline System 

In statistical machine translation, we are given a Chinese sentence in 

characters 𝑐1
𝐾 = 𝑐1 … 𝑐𝐾  which is to be translated into an English sentence 

𝑒1
𝐼 = 𝑒1 … 𝑒𝐼. In order to obtain a more adequate mapping between Chinese and 

English words, 𝑐1
𝐾  is usually segmented into words 𝑓1

𝐽 = 𝑓1 … 𝑓𝐽  in 

preprocessing. 
In our baseline system, we apply the commonly used unigram model to 

generate the segmentation. Given a manually compiled lexicon containing words 
and their relative frequencies, the best segmentation is the one that maximizes the 
joint probability of all words in the sentence, under the assumption that words are 
independent of each other. However, a human collected lexicon can hardly cover 
all Chinese words in various domains. Words out of the lexicon list are dropped 
during word segmentation and might not be able to contribute to the translation 
any more. Inaccurate word distributions can also result in sub-optimal 
segmentation. 

Once we have segmented the Chinese sentences into words, we train 
standard alignment models in both directions with GIZA++ (Och and Ney 2002) 
using models of IBM-1 (Brown et al. 1993), HMM (Vogel et al. 1996) and IBM-
4 (Brown et al. 1993). The translation system uses a phrase-based decoder with a 
log-linear model described by Zens and Ney (2004). The feature weights are 
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tuned on the development set using a downhill simplex algorithm (Press et al. 
2002). The language model is a statistical n-gram model estimated using 
modified Kneser-Ney smoothing. 

2.2.4.3 Semi-supervised Word Segmentation 

We introduce a semi-supervised approach to perform Chinese word 

segmentation as illustrated in Figure 2.2. The inputs to the system are the 

bilingual training data, including a set of Chinese sentences in characters and its 

English translations, a manual Chinese word lexicon, such as LDC lexicon, as 

well as the test corpus on character level. First, we segment the Chinese training 

corpus with a unigram segmenter using the manual lexicon and get an initialized 

training corpus in words. Then, we perform the synchronous training of Chinese 

word segmentations and word alignments to maximize the likelihood of a log-

linear model. Optimal word segmentations and alignments are generated as 

outputs. By counting the Chinese word frequencies of the generated training 

corpus, we obtain a lexicon. To combine this lexicon with a manual lexicon, we 

interpolate the probabilities of each word entry in both lexicons linearly. This 

combined lexicon is applied to segment the test corpus using unigram 

segmentation. The optimal Chinese word segmentations of the training and test 

data, as well as, the alignments of the training data, are the system outputs, which 

will be used further into the decoder. 

 

 

Figure 2.2: Semi-supervised CWS process. 

2.2.4.4 Generative and Log-linear Model 

 
Observations   
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Chinese characters 𝑐1
𝐾 小孩玩纸牌 

English sentence 𝑒1
𝐼 Children play cards 

Hidden variables   

Alignment normal 𝑎1
𝐽
 e.g. (cards, 纸),(cards, 牌) 

Alignment inverse 𝑏1
𝐼  e.g. (纸,cards),( 牌, cards) 

Chinese words 𝑓1
𝐽
 e.g. 小孩玩纸牌 

Table 2.16: Observations and hidden variables of the generative model. 

As a solution to the problems with the conventional approach to CWS 

mentioned in Section 2.2.4, we propose a generative model for CWS in this 

section and then extend the model to a more general, but deficient model, a log-

linear model in which most features are derived from the sub-models of the 

generative model. 

As shown in Table 2.16, the generative model assumes that a corpus of 

parallel sentences (𝑐1
𝐾 , 𝑒1

𝐼) is generated along with a hidden sequence of Chinese 

words 𝑓1
𝐽
 and a hidden word alignment 𝑏1

𝐼  in the inverse direction for every 

sentence. The joint probability of the observations (𝑐1
𝐾 , 𝑒1

𝐼) can be obtained by 

summing over all possible values of the hidden variables 𝑓1
𝐽
 and 𝑏1

𝐼  and each 

value is computed as following: 

𝑃𝑟(𝑐1
𝐾 , 𝑒1

𝐼 , 𝑓1
𝐽 , 𝑏1

𝐼) = 𝑃𝑟 𝑓1
𝐽
 𝛿 𝑓1

𝐽 , 𝑐1
𝐾 𝑃𝑟⁡(𝑒1

𝐼 , 𝑏1
𝐼 |𝑓1

𝐽 )                

(2.1) 

                            ≈
1

𝑧
𝑃 𝑓1

𝐽
 
𝜆1

𝑃⁡(𝑒1
𝐼 , 𝑏1

𝐼 |𝑓1
𝐽
)𝜆2𝑃⁡(𝑓1

𝐽
, 𝑎1

𝐽
|𝑒1

𝐼)𝜆3      (2.2) 

𝛿 𝑓1
𝐽 , 𝑐1

𝐾  is 1 if the characters of the sequence of words 𝑓1
𝐽
 are 𝑐1

𝐾   and to 0 

otherwise,  Z is the normalization factor. We can drop the conditioning on 𝑐1
𝐾 in 

𝑃𝑟⁡(𝑒1
𝐼 , 𝑏1

𝐼 |𝑓1
𝐽 ), because the characters are deterministic given the words. 

In Equation 2.2, we put the monolingual model and the translation models in 

both directions together into a single model, where each of the component 

models is weighted by a scaling factor. This model can be viewed as a weighted 

linear combination of the log probabilities of sub-models. The weights, which are 

optimized on a development dataset, have empirical justifications. Since different 

sub-models are trained on different datasets, their dynamic value ranges can be 

so different that it is inappropriate to combine their log probabilities through 

simple addition. Moreover, some models may be poorly estimated due to for 

example the lack of large amount of training data. Therefore, empirical results 

have demonstrated that the use of scaling factors that reflect the relative 

contribution of different sub-models often improves the performance. 

In practice, we do not renormalize probabilities and our model is thus 

deficient because it does not sum to 1 over observations. However, the model 

works very well in our experiments. Similar deficient models have been used 

successfully before, such as in IBM models (Och and Ney  2002). 
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Monolingual Chinese sentence model  

We use the Dirichlet Process unigram word model (Xu et al. 2008) to 

introduce new Chinese word types and to learn word distributions automatically 

from unlabeled data, where the parameters of a distribution over words G are first 

drawn from the Dirichlet prior 𝐷𝑃 (𝛼, 𝑃0) . Words are then indepen dently 

generated according to G. The probability of a sequence of Chinese words in a 

sentence is thus: 

𝑃𝑟 𝑓1
𝐽
 =  𝑃𝐺(𝑓𝑗

𝐽
𝑗=1 )       (2.3) 

Translation model 

We employ the Dirichlet Process inverse IBM model 1 to generate English 

words and alignments given the Chinese words. In this model, for every Chinese 

word f (including the null word), a distribution over English words Gf is first 

drawn from a Dirichlet Process prior 𝐷𝑃(𝛼, 𝑃0(𝑒)), where for 𝑃0(𝑒) we use the 

empirical distribution over English words in the parallel data. Then the 

probability of an English sentence and alignment given a Chinese sentence in 

words is given by 

𝑃𝑟 𝑒1
𝐼 , 𝑏1

𝐼 𝑓1
𝐽
 =  

1

𝐽+1
𝐼
𝑖=1 𝑃G𝑓𝑏𝑖

(𝑒𝑖|𝑓𝑏𝑖
)    (2.4) 

where the probability of 𝑒𝑖  is distributed according to 𝐺𝑓𝑏𝑖
. This is the same 

model form as inverse IBM model 1, except we have placed Dirichlet Process 

priors on the Chinese word specific distributions over English words.
7
  

In practice, we observed that using a word alignment model in one direction is 

not sufficient then added a factor to our model which includes the word 

alignment in the other direction, i.e., a Dirichlet Process IBM model 1. We ignore 

the detailed description here, because the calculation is the same as that of the 

inverse IBM model 1. According to this model, for every English word e 

(including the null word), a distribution over Chinese words Ge is first drawn 

from a Dirichlet Process prior 𝐷𝑃(𝛼, 𝑃0(𝑓)) . Here, for the base distribution 

𝑃0(𝑓) we used the same spelling model as for the monolingual unigram Dirichlet 

Process prior as described by Xu et al. (2008). The probability of a sequence of 

Chinese words 𝑓1
𝐽
 and a word alignment 𝑎1

𝐽
 given a sequence of English words 

𝑒1
𝐼 is then computed in the same way. 

 

                                                      

 
7 𝑓𝑏𝑖

 is the Chinese word aligned to ei and 𝐺𝑓𝑏𝑖
 is the distribution over English words conditioned on 

the word 𝑓𝑏𝑖
  . Similarly, 𝑒𝑎𝑗

 is the English word aligned to fj in the other direction and 𝐺𝑒𝑎𝑗
is the 

distribution over Chinese words conditioned on 𝑒𝑎𝑗
. 
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Gibbs Sampling Training 

It is generally impossible to find the most likely segmentation according to 

our Bayesian model using exact inference, because the hidden variables do not 

allow exact computation of the integrals. Nonetheless, it is possible to define 

algorithms using Markov chain Monte Carlo (MCMC) that produce a stream of 

samples from the posterior distribution of the hidden variables given the 

observations. We applied the Gibbs sampler (Geman and Geman  1984), one of 

the simplest MCMC methods, in which transitions between states of the Markov 

chain result from sampling each component of the state conditioned on the 

current value of all other variables. For a complete discussion of Gibbs sampling 

training and the word segmentation and realignment algorithm used in our 

experiment see (Xu et. al. 2008).  

The Gibbs sampler for our model works as follows: For each iteration we 

sample on each character position by fixing other segmentations and alignments, 

then we compare hypotheses considering the segmentation and the related 

alignments of this position. Each position has two alternative segmentations: a 

boundary exists, or not. The change of a segmentation boundary causes relinking 

alignment points to parts or groups of the original words. In the work of Xu et. al. 

(2008) all alignment alternatives are discussed in detail. Together with the 

boundary versus no-boundary state at each character position, we sample a set of 

alignment links between English words and any of the Chinese words related to 

this position given all other word alignments and segmentations in the parallel 

corpus fixed. After sampling by using the posterior probabilities of each 

candidate, we choose one of these candidates and perform the same operation for 

the next position. This process is usually terminated until the result is converged.  

Since we only implemented the IBM model 1 in both directions for 

computational efficiency, more advanced word alignment models are 

applied by repeatedly aligning the corpus using GIZA++. 

2.2.4.5 Translation Experiments  

We performed experiments using our models on a large and a small data 
track. We evaluated performance by measuring WER (word error rate), PER 
(position-independent word error rate), BLEU (Papineni et al. 2002) and TER 
(translation error rate) (Snover et al. 2006) using multiple references.  

 

Translation Task: Large Track GALE Translation  

We first report the experiments on the GALE machine translation task 

(GALE  2008). The bilingual training corpus is a superset of corpora in the news, 

conversation domains collected from different sources provided under the GALE 

program. As shown in Table 2.17, the training corpus in each language contains 

more than seven million sentences after the bilingual sentence segmentation (Xu 
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et al. 2005b). We took LDC (LDC 2003) as baseline method to compare. The 

word segmentation using Gibbs Sampling (GS) and baseline method generated 

92.8 and 93.9 million Chinese running words respectively. 
  Chinese  English 

  LDC GS   

Train 

Sentences[M]  7.57  

Running Words[M] 93.9 92.8  102 

Vocabulary[K] 112 121  347 

Singletons[K] 38.1 38.3  152 

Test 

Sentences  1943  

Running Words[K] 44.3 44.3  53.2 

Vocabulary[K] 6.78 6.60  6.15 

OOVs (R. W.) 15 17  246 

OOVs (in voc.) 13 14  158 

Table 2.17: Statistics of corpora in task GALE. 

The CWS model parameters are not optimized but fixed as applied in the 

IWSLT task because of the computational complexity. The log-linear model 

scaling factors in the decoder as mentioned in Section 2.2.4.2 are neither 

optimized and we took the values optimized on the baseline system for 

convenience. The resulting systems were evaluated on the test corpus in 2008 

including all domains with 1943 sentences. We only list the statistics of the first 

English reference. 

Starting from the unigram segmentation as initial word segmentation, we 

performed Gibbs sampling with only one iteration, which takes several hours, on 

the training corpus because of the large computational requirement. After that, 

we merged the GS generated lexicon with a weight of 0.4 and the manual LDC 

lexicon with a weight of 0.6 using linear combination. Then we performed the 

unigram segmentation on the test corpus using the combined lexicon. 

As shown in Table 2.18, on the test data, the BLEU score was improved by 

0.5% absolutely or more than 1.8% relatively using GS with combined lexicon. 

The TER score is also enhanced significantly, i.e., 0.8% absolutely and 0.9% 

relatively. 

 

Method WER PER BLEU TER 

LDC 73.0 49.5 28.2 67.1 

Unigram 73.0 49.7 28.4 67.2 

GS with combined lexicon 72.5 48.6 28.7 66.3 

Table 2.18: Translation performance [%] with the baselines (LDC, unigram) and GS method 

on GALE. 

We can see that although the semi-supervised word segmentation is not yet 

converged, it can still outperform a supervised one in MT. One of the reasons is 

probably the training and test corpora contain many words and words have 
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different frequencies in our MT data from they do in the manually labeled CWS 

data. 

 

Task: Small Track IWSLT 

The Chinese training corpus of the IWSLT task was segmented using the 

unigram segmenter as baseline method (Baseline) and our GS method. The 

parameter optimizations were performed on the Dev2 data with 500 sentences 

and evaluations were done on both the Dev3 and the Eval data, i.e., the 

evaluation corpus of (IWSLT  2007). 

The model weights of GS were optimized using the Powell (Press et al. 

2002) algorithm with respect to the BLEU score. We obtained the optimal number 

of iterations of the GIZA++ word alignment update as four. 

 
Test Method WER PER BLEU TER 

Dev2 
Unigram (Baseline) 38.2 31.2 55.4 37.0 

GS 36.8 30.0 56.6 35.5 

Dev3 
Unigram (Baseline) 33.5 27.5 60.4 32.1 

GS 32.3 26.6 61.0 31.4 

Eval 

Characters 49.3 41.8 35.4 47.5 
LDC 46.2 40.0 39.2 45.0 
ICT 45.9 40.4 40.1 44.9 
Unigram (Baseline) 46.8 40.2 41.6 45.6 
9-gram 46.9 40.4 40.1 45.4 
GS 45.9 40.0 41.6 44.8 

Table 2.19: Translation performance with different CWS methods on IWSLT[%]. 

For a fair comparison, we evaluated on various CWS methods including 

translation on characters, LDC (LDC  2003), ICT (Zhang et al. 2003), unigram, 

9-gram and GS. Improvements using GS can be seen in Table 2.19. Under all test 

sets and evaluation criteria, GS outperforms the baseline method. The absolute 

WER decreases with 1.2% on the Dev3 and with 0.9% on the Eval data over the 

baseline. In the BLEU score there is no change on the Eval set between the 

baseline and the GS, because the Eval data has a lower vocabulary coverage with 

the Dev2 than the other test sets such as the Dev3 do. The optimization of many 

parameters leads to a slight over-fitting of the model, so that the parameters may 

not be optimal for the Eval translation. 

 
a) Baseline   有近路吗？ 

                     do you have a ? 

GS                有近路吗？ 

                     do you have a shorter way ? 

REF              is there a shorter route ? 

 

b) Baseline   请告诉我总金额 

                     please show me the in . 

GS                请告诉我总金额 

                     please show me the total price . 
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REF              can you tell me the total amount? 

Table 2.20: Segmentation and translation outputs with baseline and GS methods. 

We compared the translation outputs using the GS with those using the 

baseline method. On the Eval data, 196 sentences have different translations out 

of 489 lines, where 64 sentences from the GS are better, 33 sentences are worse 

and the rests have similar translation qualities. Table 2.20 shows two examples 

from the Eval corpus. We list segmentations produced by the baseline and the GS 

methods, as well as the translations generated using these segmentations. The GS 

method generates better translation results than the baseline method in these 

cases. 

2.2.4.6 Conclusion and Future Work 

We showed that it is possible to learn Chinese word boundaries during the 

word alignment training so that the translation performance of Chinese-English 

MT systems is improved. 

We presented a Bayesian generative model for parallel Chinese-English 

sentences, which uses word segmentation and alignment as hidden variables and 

incorporates both monolingual and bilingual information to derive word 

segmentation and alignment for MT. 

Starting with initial word segmentation, our method learns both new Chinese 

words and word distributions using the Dirichlet Process. In a small data 

environment and a large data environment, our method outperformed the 

standard Chinese word segmentation approach in terms of the Chinese-English 

translation quality. In future work, we plan to enrich our models to better 

represent the true distribution of the data. 

Chapter 2.3 Word Alignment 

2.3.1. Word Alignment Revisited  

Authors: Francisco Guzman, Qin Gao, Jan Niehues and Stephan Vogel 

2.3.1.1 Introduction 

Word alignment can be considered the backbone of Statistical Machine 

Translation. Even when Statistical Machine Translation (SMT) shifted from a 

word-based to a phrase-based paradigm, word alignment remained the base for 

most phrase-based (Koehn et al. 2003), hierarchical (Chiang 2007) and syntactic 

SMT systems (Zollmann and Venugopal 2006; Marcu et al. 2006). Generative 

models have the advantage that they are well suited for a noisy-channel 

approach. Unsupervised training can be used to align a large amount of unlabeled 

parallel corpora. Nonetheless, they have a major disadvantage, because these 

models are completely unsupervised, they can hardly make use of the 
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